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Abstract 

 In the past few decades, climate change has been leading to more severe extreme weather 

(e.g., hurricanes and heat waves), quicker sea-level rise, and more frequent flooding in coastal 

regions. In particular, hurricanes have been identified as the starting point of weather-related 

disasters in coastal regions due to their coincident generation of extreme winds, high storm surge, 

strong waves, and heavy rainfall. Bridges in coastal regions are exposed to these multi-hazards. 

To mitigate these threats, to increase the resilience of bridges, and to take pro-active adaptation 

measures, the overarching goal of this research project is to apply multi-phase direct numerical 

simulation to understand the wind-surge-wave interaction, which will be used to better quantify 

the combined loading on bridges from multiple hazards. The obtained results will inform decision-

makers when they develop near-term measures and long-term plans for mitigation and adaptation 

to climate change. The obtained results can be used to inform the improvement of the AASHTO 

Bridge Design Specifications to accommodate future climate change, enhancing the resilience of 

bridges.  
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Chapter 1 Research Motivation and Significance 

During a storm surge, as water waves approach a beach or shore, they steepen and break, 

dissipating the energy that they have gained well away from the shore. Given that the impact of 

coastal storms on bridges has become more severe in recent years owing to climate change and 

increased urban development, there has been an increasingly urgent need to understand the 

loadings that such breaking waves exert on coastal and offshore infrastructure, such as the bridges 

used in this project, particularly in the presence of other storm-related phenomena, such as strong 

winds and storm surges [1]. There is also a fundamental interest in breaking waves: deep water 

breakers modulate mass, momentum, and energy transfer between the ocean and the atmosphere 

[2], while in the nearshore environment they play a strong role in dissipating wave energy [3–5], 

the development of currents [3,5–7], runup and setup of the shoreline water level [3,6,8], and 

transport of sediment and biological material via turbulent dissipation [7,9]. A physical 

understanding of these phenomena is crucial for the development of robust parametrizations used 

in modeling wave systems and, ultimately, the dynamics of the ocean and atmospheric processes 

[1].  

Although the shallow-water wave breaking process has been studied for many years, its 

complete understanding remains elusive. To study the fundamental dynamics of shoaling breakers, 

simplified bathymetries such as uniform slopes or step transitions in depth are often utilized. The 

problem of wave propagation into an inundated area (such as by storm surge) may be modeled by 

a change in depth with a linear slope transition (see Fig. 1.2 below); the dynamics of individual 

breakers may then be clearly examined by the propagation of a solitary wave over such a 

bathymetry. Such a problem has not to our knowledge been extensively investigated, aside from 

an analytical examination conducted by Bautista et al. [10]. In fact, most investigations have 
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considered a uniform beach without an inshore inundated region [11–20], an abrupt change in 

depth, such as over a bathymetric shelf [21–27], or a submerged breakwater [28,29]. 

 

 

Figure 1.1 Turbulent zone formed by the wave after breaking, showing the relevant integral 
velocity scale u, length scale l, and cross-sectional area A. The relationship between these 

scales and the wave parameters is unchanged between deep and shallow water, except for l. 
Adopted from Drazen et al. [46] [Fig. 1(c)]. 

 

 

Figure 1.2 Schematic diagram of wave breaking process. Conditions are shown at 
initialization and at point of breaking. When the wave breaks, the leading interface of the wave 

becomes vertical, and the wave amplitude ab is measured at this instant. 

 

Configurations such as these are useful for gaining an understanding of the small-scale 

physics of wave propagation, steepening, and breaking; this understanding can then be used to 

improve large-scale modeling efforts. Aside from experimental methods, a variety of wave-

resolving numerical models and tools have been used to understand these simple systems. Large-
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eddy simulation is used for understanding phenomena at and above the individual wave scale but 

relies on assumptions for the small-scale processes involving turbulence and void-fraction effects. 

Fully nonlinear potential flow models [19,30] are especially powerful for understanding the 

evolution of prebreaking waves but cannot capture the breaking process itself or the associated 

dissipative processes. However, with increasing sophistication of numerical methods and 

availability of computational resources, it has become possible in recent years to use direct 

numerical simulation (DNS) in simulating the wave breaking process [20,31–35]. While the main 

drawback of DNS is that it is too computationally expensive to simulate intermediate- or large-

scale wave systems, DNS of wave breaking nevertheless provides a powerful investigative tool for 

understanding the small-scale physics of breakers directly. Somewhat surprisingly, this has proven 

to be the case for two-dimensional (2D) simulations, despite the essentially three-dimensional (3D) 

character of turbulence: many investigations by different authors across a variety of different 

experimental and numerical setups have shown that 2D numerical breakers experience dissipation 

rates similar to 3D numerical and experimental breakers [33–36], although naturally slightly 

smaller; this remains the topic of ongoing investigation [35]. On the basis of these observations, 

and following [20], we will assume here that 2D simulations are a reasonable proxy for the 

energetic dissipation of the full 3D simulations, subject to confirmation in a future study. 

The purpose of the present study is to perform DNS of a breaking solitary wave on a simple 

bathymetry in the presence of a storm surge. The resulting data will then be used to set up physics-

informed parametrizations for wave energy dissipation in storm surge conditions, for future 

applications to larger-scale models that operate under more realistic topographies and bathymetries, 

such as Simulating WAves Nearshore (SWAN). We will present a 2D DNS of solitary breakers 

approaching an inundated beach with the configuration shown in Figure 1.2. Solitary waves have 
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long been used as models for studying breaking processes (e.g., [11,12,37]). In this project, we 

will include an inundated inshore beach region, which allows the broken wave to propagate over 

a region of uniform depth. In the analysis, the generality of parametrizations and relevance of 

scaling arguments usually applied to deep-water systems will also be discussed. The remainder of 

this report is organized as follows. In Chapter 2, we will review existing physics-based 

parametrizations for energy dissipation in breaking waves, which will be tested against new data 

in Chapter 4. In Chapter 3, the problem itself will be formulated and the methodology will be 

presented. In Chapter 4, we will present the data, test the various parametrizations against it, and 

discuss insights that may lead to a general water-depth-independent parametrization. Finally, in 

Chapter 5, conclusions will be drawn, and future work will be suggested. 
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Chapter 2 Review on Model Parametrizations for Wave Breaking 

The project will use DNS to generate high-resolution data that can inform the development 

of strictly physics-informed parametrizations for wave breaking in shallow water. Therefore, in 

this chapter, we will review some existing physics-based parametrizations relying on geometric 

and dynamic considerations of local wave properties. Pictorial representations of the wave 

breaking process relevant to this study are shown in Figures 1.1 and 1.2. There are many breaker 

models besides the ones discussed below, including the roller model [38], which makes extensive 

use of Duncan’s [39,40] observations, or the eddy viscosity approach [41], but these will not be 

discussed here. First, following Duncan [39] and Phillips [42], energy dissipation in breakers is 

often expressed in terms of the dimensionless b parameter, 

 

 
(2.1) 

 

owing, among other things, to its utility in expressing energy dissipation in a wave system as the 

fifth moment of Phillips’ wave breaking distribution, ᴧ(c). Here εl is the (dimensional) energy 

dissipation rate per unit length of breaking crest, c is the velocity of the breaking crest, ρ is the 

water density, and g is gravitational acceleration. The key observation is that the dissipation rates 

in geometrically similar breakers are proportional to the fifth power of the crest speed c =|c|. The 

dependence of the proportionality parameter b has seen several studies of its dependence on the 

breaker geometry since its introduction in Duncan [39]. 

One of the oldest approaches to characterizing breaker dissipation, particularly in shallow 

water, is to model breaking waves as being energetically equivalent to hydraulic jumps. The 
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dissipation rate of a hydraulic jump in shallow water is easily derived from applying a conservation 

analysis on the nonlinear shallow-water equations (NLSWEs) [43] and given by 

 

 
(2.2) 

  

 

where hb and h2 are the water depth ahead of and behind the hydraulic jump, respectively. This 

model is, for example, used to set the energy dissipation in the “shock-capturing” approach of 

certain joint Boussinesq-NLSWE models [44], as well as in third-generation spectral wave models 

such as SWAN [45]. 

Inertial arguments for breaker properties have also been developed in deep [46] and 

shallow water [20] as a function of the breaker’s geometric properties. They use the same 

dimensional analytical approach to develop their dissipation scaling arguments. The difference 

between them arises solely from the integral length scale of the eddies in the turbulent zone formed 

by the breaker (see Fig. 1.1). Namely, under Taylor’s hypothesis, the local turbulent dissipation 

rate is given by ε = u3/l: according to Mostert and Deike [20] and Drazen et al. [46], in both shallow 

and deep water, 𝑢𝑢 ≈ �2𝑔𝑔𝑎𝑎𝑏𝑏; in deep water l ∝ ab [46], which reflects the length scale at which 

energy is input into the turbulent zone, while in shallow water l ∝ hb, since often hb ≤ ab and 

eddies with a diameter larger than the local depth cannot exist [20]. The dissipation rate per unit 

length of breaking crest is related to the turbulent dissipation rate by εl = ρAε, where the area of 

the turbulent zone is assumed to be cylindrical such that A = π ab
2 /4. This leads to the scalings 
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(2.3) 

  

 

in deep water, where S is the local slope parameter of the breaker [46], and 

 

 
(2.4) 

 
(2.5) 

 

in shallow water [20], where ab is the wave amplitude at breaking and hb is the water depth 

immediately ahead of the breaker, and β1, β2 are both dimensionless constants. Using appropriate 

semiempirical fits to draw together a variety of data sets [47], the deep-water model in particular 

has proved very successful for use in spectral wave modeling in the open ocean [47,48] and in its 

fundamental form has even been shown to perform slightly better than the hydraulic jump model 

in an inner surf zone problem (e.g., [49]). While very similar in formulation, the deep- and shallow-

water models were applied to different environments. That is, the deep-water model of Drazen et 

al. [46] was applied to study dispersively focused wave packets, while the shallow-water model of 

Mostert and Deike [20] was applied to study shoaling solitary waves. Nevertheless, this approach 

is agnostic of the origin of the breaker of interest, as it considers only local geometric parameters 

at the point of breaking. These inertial models are what we will primarily compare in this study. 

Note that Pizzo et al. and Sinnis et al. [50,51] proposed a modification of the inertial model in 

Drazen et al. [46] for deep-water-focused packets by interpreting the cross-sectional area of the 

breaker in terms of a wave-number bandwidth. However, this work will not be directly 
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incorporated in the present study given the difficulty of defining wavelength [16] (or indeed 

bandwidth) for solitary waves. Finally, the model of Derakhti et al. [18] relays a dynamic criterion 

[52] for a breaking threshold, finding collapse of their breaker dissipation rates by using the 

semiempirical scaling, b = 0.034(Г− 0.30)5/2, Г= TbdB/dt|Bth, where B = ux/c is the particle speed 

at the crest relative to the crest speed, Bth = 0.85 is the threshold value of B taken as a criterion for 

breaking, and Tb is the period of the carrier wave. Although developed for breakers in deep and 

intermediate water, this model may also be applicable to shallow water or solitary waves; owing 

to difficulties in the measurement of Г in the present data (see Section 4.5), we will not directly 

compare this parametrization. 

 

Table 2.1 Values of ∆x/𝑎𝑎0 for associated 𝑎𝑎0/ℎ0 

𝑎𝑎0/ℎ0 0.2 0.3 0.4 0.5 

∆x/𝑎𝑎0 1/32.7 1/49.1 1/65.5 1/81.9 
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Chapter 3 Formulation and Methodology 

3.1 Numerical Method 

For the simulations used in this project, we use the Basilisk package to solve partial 

differential equations on regular adaptive Cartesian meshes [53]. The Basilisk package is an open-

source numerical library, developed as a successor to the Gerris Flow Solver. Following [20], we 

use Basilisk to solve the nonlinear incompressible Navier-Stokes equations in two phases (air and 

water) with variable density and surface tension. In this solver, the Bell-Colella-Graz projection 

method [54] issued to solve the momentum equation, and a momentum-conservative volume of 

fluid (VOF) advection scheme is used to advect the liquid-gas boundary, which helps to maintain 

a relatively sharp interface representation [55]. The method in Brackbill et al. [56], which was 

further developed and implemented by Popinet [55], is used to model the surface tension.  

The incompressible Navier-Stokes equations with surface tension and variable density 

govern the flow in two phases (water and air) and can be written as  

 

 

(3.1) 

 

where u = (u, v) is the fluid velocity, ρ the density, μ the dynamic viscosity, and D the deformation 

tensor. The interface between air and water is defined by the γκδsn term, where δs is the Dirac delta 

function, γ is surface tension, and κ and n are the mean curvature and normal of the interface, 

respectively, which are estimated using a height function approach in the VOF scheme [55]. The 
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volume of fluid tracer f is used to distinguish between air and water phases and sets the density 

and viscosity in the relevant phase. 

The Basilisk software library features a quadtree-based adaptive mesh refinement (AMR) 

scheme, which allows highly effective resolutions to be attained at a fraction of computational cost 

associated with conventional, uniform-grid approaches [53,57]. The method identifies and finely 

resolves only the active portions of the simulated flow, while using coarser local resolutions for 

roughly quiescent regions. In particular, the AMR approach more easily allows the direct 

resolution of small-scale turbulence in water without the need of a turbulence model. The criterion 

for refinement is determined through a wavelet algorithm, which estimates the discretization error 

in the velocity and VOF fields, following [20,35]. 

In this project, effective resolutions are stated in terms of the level parameter Le, where x 

= L0/(2Le) is the minimum grid size and L0 is the domain length. The maximum resolution is set to 

Le = 13 for the cases presented here; numerical convergence of the energy budgets, which are used 

to determine energy dissipation, is shown in Appendix A. 

For all simulations, the bathymetry length was set to L0/h0 = 50. We have ∆x/L0 = 1/213 and 

∆x/Lc = 1/1638.4, where Lc = 10h0. For the viscous boundary layer, we use Batchelor’s estimate, 

δv ∼ h0/√𝑅𝑅𝑅𝑅 = 5 × 10−3h0. Therefore, ∆x/δv = 1/(5 × 10−3h0). For the capillary length scale, we 

have ∆x/λc = 3.67 cm−1 (although for this 2D study we do not consider bubbles or droplets). 

Additionally, several values of ∆x/a0 are shown in Table 2.1 for various values of a0/h0. The 

maximum resolution is 16 cells over the wave amplitude. 
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3.2 Problem Formulation 

In this project, we consider a varying bathymetry, featuring a depth change with a linear 

transition, as illustrated in Figure 1.2, as a simple model for wave runup in storm surge conditions. 

After some distance, Lc, the bathymetry changes from a uniform flatness (hereafter offshore region) 

to a uniform slope. This slope continues until the storm surge depth hs is reached, upon which the 

bathymetry returns to a uniform flatness (hereafter inshore region) for the rest of the domain, 

representing the storm surge area. We set the problem by considering a solitary wave of amplitude 

a0, traveling in the x direction over a uniform water depth of h0, as illustrated in Figure 1.2. A 

negative storm surge depth hs corresponds to an inshore region elevated above the undisturbed 

water level. The wave may break either over the sloped transition or over the inshore region. The 

latter case can occur only for positive inshore depths hs, while the former case can occur for hs of 

any sign. 

We use the depth h0 to set the length scale. We set a reference velocity scale using the 

linear speed c0 = �𝑔𝑔ℎ0  and find the solitary wave phase speed to be c/c0 =�1 + 𝑎𝑎0ℎ0 . The 

timescale is then set as t0 =�ℎ0/𝑔𝑔. We use the Bond number, Bo = ρgh0
2 /σ = 1000, to set the 

surface tension, and the Reynolds number, Re = c0h0/ν = 40000, to set the water kinematic viscosity. 

A ratio of air density to water density (ρair/ρ) of 1/850 is used. The chosen value of Re corresponds 

with a depth of h0 = 5.46 cm, and Bo with a depth of 8.6 cm for water and air at room temperature. 

Following evidence from studies of short (deep-water) waves [33–35], we expect these values of 

Re and Bo to be asymptotically large, and thus the essential dynamics of the wave propagation and 

breaking problem are insensitive to them. Specifically, we expect the speed and rate of wave 

steepening to be insensitive to Re and Bo, consistent with the findings of Mostert and Deike [20], 

who validated their numerical data partly against the experiments of Camfield and Street [11,12], 
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which were run at different values of these parameters. The shape of the overturning wave and the 

local turbulent dissipation rate is also expected to remain insensitive to these values, given 

observations in deep water [33–35]. To keep the numerical simulations tractable, we therefore do 

not vary these parameters in the present study, but this assumption remains to be confirmed for 

shallow-water contexts in future work. 

The wave is initialized using the exact soliton solution to the Green-Naghdi equations [58] 

given by 

 

 

(3.2) 

 
(3.3) 

 

This forms a solitary wave, at location xw in Figure 1.2, that propagates inshore towards 

the beach, steepens, and breaks, as described in Section 4.1.  

In this project, 123 cases are simulated by varying the three parameters, which are the storm 

surge depth hs, the beach slope α ≡ tan θ, and the offshore wave amplitude a0, as illustrated in 

Table 3.1. For each combination of initial wave amplitude and beach slope, cases are run covering 

inshore depths from hs/h0 =−0.4 to 0.5. Cases with negative storm surge depths represent 

bathymetry where the inshore region is above the water initially, causing the wave to break against 

the beach slope. This case is somewhat similar to the bathymetry condition considered in [20], 

which could be interpreted as the limiting case hs/h0 →−∞. 
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Table 3.1 Outline of the simulated cases. The varying parameters are the beach slope α ≡ tan θ 
(rows) and offshore wave amplitude a0 (columns). Note that the beach slope ranges fall under the 

small angle approximation, α ≈ θ. The individual entries mark the number of different storm 
surge (inshore) depths that have been run for the corresponding values of a0, θ; these vary from 

hs/h0 =−0.4 to 0.5.  
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Chapter 4 Results and Discussion 

4.1 Describing the Wave-breaking Process 

This chapter discusses the wave breaking process for some representative cases, in which 

different types of breakers are formed, as illustrated in Figures 4.1–4.3. Figure 4.1 presents the 

vorticity around the wave in water at four representative time instants during wave breaking for a 

case with a positive storm surge depth. For this case the beach slope is θ = 4◦, the initial wave 

amplitude is a0/h0 = 0.4, and the storm surge (inshore) depth is hs/h0 = 0.2. The wave begins to 

break around the boundary between the uniform slope and inshore region (see Fig. 4.1(a)); as the 

wave propagates further, an air cavity forms inside the breaker (see Fig. 4.1(d)), which is 

characteristic of a plunging breaker. An additional plunging breaker with a negative storm surge 

depth is described in Appendix B (see Fig. B.1). 

Figure 4.2 shows a case with a large storm surge depth. Here the beach slope is θ = 3◦, the 

initial wave amplitude is a0/h0 = 0.3, and the storm surge depth is hs/h0 = 0.5. Similar to Fig. 4.1, 

the wave breaks on the inshore region, but no clear air cavity is encapsulated as the wave breaks, 

making this is a spilling breaker. Finally, Figure 4.3 shows a case with a large beach slope. Here 

the beach slope is θ = 5◦, the initial wave amplitude is a0/h0 = 0.4, and the storm surge depth is 

hs/h0 =−0.4, i.e., the inshore region lies well above the undisturbed water level. The wave breaks 

on the beach slope. From Figure 4.3(d), an air pocket is observed, indicating that a plunging 

breaker is formed.  
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Figure 4.1 Wave breaking process (plunging breaker) for the case with a beach slope of 4◦, 
initial wave amplitude of 0.4, and storm surge depth of 0.2. Vorticity (color contour) in the 

water phase at the following four time instants: (a) t /t0  = 13.8, (b) t /t0  = 14.4, (c) t /t0  = 14.7, 
(d)  t /t0 = 15.3. 

 

 

Figure 4.2 Wave breaking process (spilling breaker) for the case with a beach slope of 3◦, 
initial wave amplitude of 0.3, and storm surge depth of 0.5. Vorticity (color contour) in the 
water phase at the following four time instants: (a) t /t0 = 19.75, (b) t /t0 = 21.75, (c) t /t0 = 

23.2, and (d) t /t0 = 26.0. 

 

In summary, plunging breakers exhibit clear overturning jets, such as those visible in 

Figures 4.1(b), 4.1(c), 4.3(b), 4.3(c), and B.1(c); although spilling breakers also feature overturning 

behavior, which is essentially the same process as in plungers on smaller length scales [16,33,59], 

and is not easily distinguishable in the present simulations. 
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4.2 Classifying the Types of Breakers for All Simulation Cases 

The breakers for all simulation cases are classified as either plunging breakers or spilling 

breakers. Plunging breakers are characterized by the presence of a well-defined cavity underneath 

the overturning jet, while spilling breakers in this data set correspond to any other breaking 

morphology. We note that there is no fundamental difference between plunging and spilling 

breakers. New et al. [60] observed that spilling breakers overturned in a remarkably similar manner 

to plunging breakers, where the scale of the overturning jet is merely smaller. The same 

phenomenon was observed in the context of solitary waves specifically [16]. The similarity does 

break down for sufficiently small wavelengths, in which case parasitic capillary waves can arise 

and modify the breaking process [33,61], but this phenomenon occurs for Bond numbers 

significantly smaller than those considered in the present study and is not qualitatively apparent in 

our simulations. Nevertheless, plunging breakers as we have defined them here are known to  

cause significantly increased loadings on offshore structures owing to the presence of the entrained 

air cavity [62], and the entrained cavity can also affect the wave’s dissipative properties [34,35]. 

It therefore remains of interest to identify this broad change in wave character.  
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Figure 4.3 Wave breaking process (plunging breaker) for the case with a beach slope of 5◦, 
initial wave amplitude of 0.4, and storm surge depth of −0.4. Vorticity (color contour) in the 

water phase at the following four time instants: (a) t /t0 = 7.25, (b) t /t0 = 12.25, (c) t /t0 = 13.2, 
and (d) t /t0 = 14.45. 

 

 To determine whether the type of breaker can be determined by the local conditions of the 

wave at the moment of breaking, the wave amplitude at breaking ab and water depth hb under the 

breaking wave is extracted from the data for each case and normalized by h0 to get dimensionless 

wave amplitude ab/h0 and water depth hb /h0. The breaking amplitude is then plotted against 

breaking depth (ab/h0, hb /h0), as shown in Figure 4.4, with solid and hollow markers denoting 

spilling and plunging breakers, respectively. The shape of the marker denotes the beach slope. The 

solid markers and the hollow markers can be separated by a line, which is governed by hb = ab − 

0.12 (i.e., ab/hb ≈ const) as indicated by the dashed line in Figure 4.4. Given that plunging and 

spilling breakers are governed by the same overturning behavior, though at different length scales 

[16,33,59], the particular form of this separating line does not reflect a change in fundamental 

physical processes, but may instead suggest that breaker intensity correlates with the so-called 

breaking index γ ≡ ab/hb, which is equivalent to one form of the nonlinearity parameter F (see 

Section 4.4). Further, Figure 4.4 suggests that (1) breaking amplitude and depth are rather 
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insensitive to beach slope, and (2) for a given breaking depth, plunging breakers have larger 

amplitudes than spilling breakers. In other words, if the wave amplitude at breaking is relatively 

larger, it will have a higher chance to encapsulate air and thus will more likely form a plunging 

breaker. (3) For sufficiently low wave amplitude and sufficiently high depth, a wave will not break, 

as indicated by the solid black markers. This threshold is suggested by Losada et al. to be ab/hb = 

0.7, for example [21]. 

 

 

Figure 4.4 Breaker types of all simulated cases. Blue-filled shapes represent spilling breakers, 
and hollow shapes represent plunging breakers. Black-filled shapes at locations of maximum 
local wave height represent nonbreaking cases. The dashed line (hb = ab − 0.12) separates the 

spilling breaking cases from the plunging breaking cases. 
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4.3 Determining Energy Budget and Dissipation 

For all the simulated cases, the energy dissipation is examined. Figure 4.5 shows the energy 

dissipation process for a few representative cases, namely, with storm surge (inshore) depths of hs 

/h0 =−0.2, 0.1, 0.3, and −0.4, respectively. 

In the figures, the dotted line represents the gravitational potential energy, the dashed line 

represents the kinetic energy, and the dark line represents the sum of these two, as the total 

conservative energy. The surface tension energy has been found in such cases to be negligible 

[20,33]. The leftmost vertical line represents the time when the wave begins to break (namely, 

when the wave face becomes vertical). The natural end time of breaking, however, is not 

immediately obvious. In Mostert and Deike [20] the end time was defined as the moment after 

breaking that the gravitational potential and kinetic energies were equal; this corresponds to the 

crossover of these energies in the case of Figure 4.5(a), which has a negative storm surge depth 

and thus the wave breaks on the beach slope. This is due to the transfer of kinetic energy to 

gravitational potential energy as the wave runs up the beach. In such a case, the wave exchanges 

kinetic energy that would otherwise be available for dissipation through breaking into gravitational 

potential energy, which rapidly slows or terminates the breaking process. However, such a moment 

does not arise naturally for cases with positive storm surge depths or for small negative storm surge 

depths in the present study. This is because for such cases, the breaker cannot gain a significant 

amount of gravitational potential through runup; it thus retains kinetic energy available for 

dissipation, allowing the breaking process to prolong without a clear endpoint. Therefore, in this 

project, an approach to determining the breaking end time is developed using a linear regression 

of the total energy budget, as shown in Figure 4.5. First, in our analysis, we consider a parameter 

sweep to be a series of cases of varying storm surge depths (hs /h0 =−0.4–0.5) with the same 
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combination of beach slope (θ) and initial wave amplitude (a0), as shown in Table 3.1. For each 

combination of (a0/h0, θ, hs /h0), a least-squares line is fit to the energy budget from the breaking 

time t1 = tb to a range of candidates for the end time t2. The candidate of t2 resulting in the best fit 

(i.e., with the highest determination coefficient R2) is noted. For a given combination of (a0/h0, θ), 

the results are then averaged into a single end breaking time, across the set of all corresponding 

storm surge depths. The range of best end breaking times within this set is used to develop error 

bars for the dissipation rate at each storm surge depth. While all the cases at a given (a0/h0, θ) share 

the same temporal distance between the start and end of breaking, each case will have distinct error 

bars for energy dissipation rate since the energy budget is unique for each case. 
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Figure 4.5 Energy dissipation for representative cases: (a) 0.5 amplitude, 3◦ beach slope, 
−0.2stormsurge depth; (b) 0.3 amplitude, 3◦ beach slope, 0.1 storm surge depth; (c) 0.3 

amplitude, 3◦ beach slope, −0.4 storm surge depth; and (d) 0.3 amplitude, 2◦ beach slope, −0.4 
storm surge depth. Kinetic energy is shown as the dashed line, gravitational potential energy is 
shown as the dotted line, and total energy is shown as the solid line. The leftmost vertical line 
represents the start of breaking time, while the three rightmost vertical lines represent the error 
bar approximation of breaking end time. The solid red line represents the line of best fit for the 

specific total energy dissipation curve. 

 

Results for some representative cases are shown in Figure 4.5. The red line in each figure 

shows a linear fit between t1 = tb and the candidate t2 with the highest R2 value for that case; the 

three rightmost vertical lines in the shaded region represent the end time of the breaking event with 

the center line representing the average breaking end time across all storm surge depths at the 

given (a0/h0, θ), and the left and right lines representing the error bar range. From all figures, a 

clear drop in total energy is observed as the wave breaks. The cases with negative storm surge 

depths show a steep drop in kinetic energy when compared to those with positive storm surge 
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depths, due to wave breaking on the beach slope, which reduces the water velocity more 

significantly. For all cases, the initial energy dissipation observed in the wave before breaking is a 

physical effect captured by the numerical simulations and is numerically converged in our study. 

Figure 7(a) shows that for negative storm surge depths, this method can predict a breaking end 

time very close to the crossover point between kinetic and gravitational potential energy used in 

Mostert and Deike [20], without any additional tuning of parameters, although we note that this 

behavior is not observed in all cases. While the kinetic or gravitational crossover often lies within 

the range of best t2 within a given set of storm surge depths, as in Figure 4.5(c), this is not always 

guaranteed (see Fig. 4.5(d)). 

4.4 Characterizing Dissipation Rate  

The energy dissipation induced by a breaking wave is typically described by its dissipation 

rate per unit length of breaking crest, εl [39]. In this project the dissipation rate is determined using 

a linear fit to the total energy (i.e., the sum of gravitational potential and kinetic energies) during 

the breaking event, 

 
 

 
(4.1) 

  

 

where ∆ E =|E1 − E2| and ∆t =|t1 – t2|, with subscripts 1 and 2 representing the start and end of the 

breaking event, respectively. Aside from how t2 is determined (see Section 4.3), this is consistent 

with the methodology applied in [20,35]. The dissipation rates for all simulation cases are shown 

in Figure 4.6. 
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Figure 4.6(a) plots the dissipation rates against normalized ab for all the simulated cases. 

The colors of black, red, green, and blue represent beach slopes of θ = 2◦, 3◦, 4◦, and 5◦, respectively. 

Scaled dissipation rate is plotted with respect to the local breaking conditions, where the constant, 

ε0 = ρg3/2h0
5/2, is used to normalize the dissipation rate. Error bars are included for each data point 

to calculate the dissipation rate at the upper and lower limits of the end breaking time as described 

in Section 4.3. The dissipation rate from Mostert and Deike [20] is shown as hollow squares in 

Figure 4.6(a) for comparison. In general, across all cases the dissipation rate increases with the 

wave amplitude at breaking, but there is considerable variation in the data due to the effects of the 

beach slope and inshore storm surge depth. Note that despite the methodological differences, the 

estimates for the dissipation rate for negative storm surge depths in the present data lie 

approximately within the spread of the cited data from Mostert and Deike [20], which corresponds 

to the limit hs/h0 →−∞. 
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Figure 4.6 (a) Dissipation rate plotted against normalized wave amplitude at breaking for all 
simulated cases. Data from Mostert and Deike [20] are also included as hollow squares for 

comparison. (b) Dissipation rate plotted against storm surge depth. (c) Dissipation rate plotted 
against ab scaled by hb. The line represents the shallow water inertial model from [20]. (d) 

Breaking parameter shown in Eq. (2.1) plotted against nonlinearity parameter ab / hb. Dashed and 
solid lines represent deep- and shallow-water scalings, respectively. Blue dotted line represents 
the hydraulic jump bore model [43]. For panels (c) and (d), shape representation is as shown in 

(a), and for all panels, color representation is as shown in panel (b). 

 

Figure 4.6(b) shows the dissipation rate plotted against storm surge depth for all simulation 

cases. Clear delineations can be seen between the cases of the various beach slopes. The cases with 

higher beach slopes tend to experience a higher dissipation rate. Overall, for the cases with positive 

storm surge depths, the dissipation rate decreases with increasing storm surge depth. This is 

because for positive hs /h0, the wave can break either on the slope (hb > hs) or on the inshore region 

(hb = hs); hence, following the inertial argument of Chapter 2, the integral length scales of the 

turbulence can only increase with increasing hs /h0, corresponding with lower dissipation rates. On 

the other hand, for the cases with negative storm surge depths, dissipation rate decreases with 
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increasing |hs /h0|, i.e., with an increasing elevation difference between the inshore region and the 

undisturbed water level, the greatest energy dissipation rate occurs where the inshore region is at 

an elevation only slightly higher than the water level. While all waves with negative hs/h0 break 

on the sloped region, the resulting runup forces the integral length scales of the turbulent flow to 

reduce, driving an increase in dissipation rate. This effect is strong for small values of |hs/h0|. 

However, for large negative values of hs /h0, the breaker runs up the slope and thereby rapidly 

exchanges kinetic energy for gravitational potential energy, so that there is less available energy 

for dissipation. This effect appears to outstrip the increase in dissipation rate resulting from the 

smaller integral length scales and results in a lower dissipation rate. Note finally that the negative 

values of hs/h0 tend to show slightly larger error bars than positive hs/h0; these indicate greater 

variability in the energy budget between different slopes and wave amplitudes for a given storm 

surge depth.  

We now examine the performance of different parametrizations in capturing the trends in 

the data. Figure 4.6(c) shows the energy dissipation rates scaled according to Equation (2.5), i.e., 

the shallow-water parametrization of Mostert and Deike [20]. The data collapse consistently with 

the scaling, represented by the dashed line in the figure. For small dissipation rates and high beach 

slopes, the data with negative hs/h0 values tend to show the greatest relative deviation from the 

scaling (in addition to having large error bars). This reflects that as the wave runs up the beach, 

the inertial argument that leads to Equation (2.5) becomes less relevant because the breaking depth 

hb is no longer properly defined. Moreover, as the breaker runs up the beach, dissipation due to the 

bottom boundary layer may become significant; such effects are not accounted for in Equation 

(2.5). These observations also apply to the DNS data of Mostert and Deike [20] and may explain 

why it does not fully collapse to the parametrization. 
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We compare other parametrizations in Figure 4.6 (d), making use of the nonlinearity 

parameter of Beji [63], 

 

 
(4.2) 

 

where a is a representative amplitude and c is a phase speed. In the shallow-water limit, with c 

=�𝑔𝑔ℎ𝑏𝑏 , we have F →𝑎𝑎𝑏𝑏/ℎ𝑏𝑏 . We also explicitly use the dimensionless breaking parameter b 

defined in Equation (2.1), which is especially relevant to deep-water studies [39,46], but can also 

be defined for shallow water (see Chapter 2). With c =�𝑔𝑔ℎ𝑏𝑏, the shallow water scaling (Eq. (2.5) 

of Mostert and Deike [20]) can be nondimensionalized into b ∝ F7/2 and is shown with a solid 

line. In the deep-water limit (i.e., the context of Drazen et al. [46]), F → S where S is the breaking 

slope, and obtains b ∝ F5/2. Note that the inertial argument of Drazen et al. [46] can apply to any 

breaker, provided the integral length scale of the turbulence can be approximated by ab (rather than 

hb, as in Mostert and Deike [20]), which could occur in the shallow-water limit for cases where 

𝑎𝑎𝑏𝑏/ℎ𝑏𝑏 ≥ 1, which is common in the present data. Even in this case, however, the scaling b∝F5/2 

is recovered. This is shown by the dashed line. Finally, the dimensionless form of the bore model 

(2) yields 

 

 
(4.3) 
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and is shown with the blue dotted line. This model relies on the assumption that all waves in 

shallow water can be energetically modeled as hydraulic jumps. When plotted together, the data 

obtained in this project appear to best match the inertial scaling in Eq. (2.5) of Mostert and Deike 

[20]. The other scalings have shallower slopes, with the deepwater scaling deviating most from 

the data obtained in this project. 

 

4.5 Considerations for a General Breaking Parametrization   

We have found that for solitary waves in the presence of a simple storm surge geometry, 

the shallow-water parametrization b ∝ F7/2 of Mostert and Deike [20] accurately predicts the 

dissipation rate of breaking. It better collapses the DNS data of the present study than for the 

hydraulic jump model, Eq. (2.2), suggesting that solitary waves are not well approximated 

energetically by hydraulic jumps. However, the shallow-water parametrization F7/2 performs better 

even for breakers where 𝑎𝑎𝑏𝑏 > ℎ𝑏𝑏 , equivalently F > 1, for which one might expect that the 

parametrization b∝F5/2 of [46] would be superior. We therefore discuss whether these two 

parametrizations could be harmonized across different data sets, including both shallow- and deep-

water regimes. 

Note the nonlinearity parameter F in Eq. (4.2) can be used to nondimensionalize the water 

wave equations in a depth-independent way. Using the linear phase speed in arbitrary depth, c2 = 

(g/k) tanh (kh), in the short-wave (deep-water) limit, F ∼ ak = S is the wave slope, while in the 

long-wave (shallow-water) limit, F ∼ a/h. Figure 4.7(a) shows the b parameter for a variety of 

experimental and numerical sources for deep-water breakers [33,34,46,64,65], along with the 

present shallow-water data set. While the shallow-water data set appears to have a slope 
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qualitatively similar to the deep-water data, there is a clear break between the two groups, and a 

single power-law scaling cannot capture both data sets. 

 

 

Figure 4.7 (a) Plot of b parameter against nonlinearity parameter F for shallow-water data 
from the present study and deep-water data from literature. Black and gray triangles and gray 
diamonds are from Drazen et al. [46]; cross and circles from Banner and Peirson [64]; squares 

from Grare et al. [65]; red triangles are DNS from Deike et al. [33]. Blue circles are the 
present shallow-water DNS. (a) Data plotted without shifts or scaling, (b) Data shifted 

horizontally by estimated breaking threshold F∗. For the deep-water data, F∗ = 0.08; for the 
present shallow-water DNS data, F∗ = 0.7. 

 

The difference may possibly be accommodated with a heuristic consideration of breaking 

threshold. In their semiempirical study, [47] fitted a best-fit curve to deep-water data, finding 

 

 
(4.4) 

 

with ST = 0.08. Here ST can be qualitatively interpreted as a breaking threshold, which is closely 

related to questions of breaking dissipation. Identifying breaking criteria in deep and shallow water 

remains an active research topic [33,46,50–52,66–68], and recent investigations have shown that 
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the breaking criterion in deep water depends on the bandwidth of the breaking wave group, 

somewhat equivalent to a Benjamin-Feir index [50,51,68]. It is not the purpose of this study to 

speculate on the breaking threshold for shoaling solitary waves, and breaker bandwidth is not well 

defined for these waves, but we may give a rough heuristic estimate of F∗ ≈ 0.7, following Losada 

et al. [21] who found this threshold for solitary waves encountering abrupt depth changes. Plotting 

a modified fit of b = 0.4(F − F∗)5/2 with F∗ = 0.08 in deep water, and F∗ = 0.7 in shallow water, 

produces Figure 4.7(b), which more closely collapses the deep- and shallow-water data. 

While promising, the above approach, and indeed the comparison of different 

parametrizations in Section 4.4, essentially sets F =𝑎𝑎𝑏𝑏/ℎ𝑏𝑏, well known as the breaking index γ 

[69], but it relies on identifying the crest speed with the linear wave speed at the breaking depth, c 

=�𝑔𝑔ℎ𝑏𝑏. However, the breaking crest remains close to its offshore speed, 𝑐𝑐0 = �𝑔𝑔(ℎ0 + 𝑎𝑎0) ≈

�𝑔𝑔ℎ𝑏𝑏, which is a more natural choice for nondimensionalizing the energy dissipation. Using it 

identifies the b parameter with the left-hand side of Equation (2.4), since g3/2h0
5/2  = c0

5/g, in which 

case we can interpret Equation (2.4) as 

 

 
(4.5) 

 

where b0 = gε/(ρc0
5), F0 =𝑎𝑎𝑏𝑏/ℎ0, and M2 = c0/c = h0/hb is the ratio of the inshore and offshore wave 

speeds, and γ is the breaking index. The second half of Equation (4.5) is suggestive of a close link 

with the deep-water scaling [46], except that γ (and M2) do not have deep-water equivalents, so 

they cannot be immediately compared on the same axes.  
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Figure 4.8 Comparison of energy budget between two mesh resolution levels 213 and 214 for 
two cases: (a) 0.2 initial wave amplitude, 2◦ beach slope, and 0.3 storm surge depth; (b) 0.4 

initial wave amplitude, 4◦ beach slope, and 0.3 storm surge depth. 

 

We remark finally that the dynamic/kinematic parametrization of [18] using the parameter 

Г has shown good data collapse, but Г is difficult to estimate for the present data owing to noise 

in the numerical differentiation of the related quantity ux/c, evaluated at the wave crest. 
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Chapter 5 Conclusions 

In this project, we have conducted various two-dimensional direct-numerical simulations 

of solitary wave breaking over a simple storm surge bathymetry, varying the depth of the storm 

surge, beach slope, and wave initial amplitude. The resulting breakers can be classified into 

plunging or spilling breakers through a clear separation line, which was developed based on wave 

amplitude and water depth at the point of breaking. In addition, we studied the energy dissipation 

of the cases to determine a dissipation rate for each case. After comparing with prior dissipation 

rate data from the literature, we found that the shallow water dissipation rate model developed in 

Mostert and Deike [20] can be extended to this storm-surge-style bathymetry with good data 

collapse, performing better than the hydraulic jump analogy or the deep-water parametrization of 

Drazen et al. [46]. Furthermore, we compared our shallow water data with deep water data from 

literature using a breaking parameter and explored possibilities of a unifying model. A promising 

collapse of most of the data can be obtained. The obtained results from this project could be used 

in the future to study how changes in the energy dissipation of breaking waves affect the wave 

loading on coastal structures, particularly in the presence of a storm surge. Possibilities for 

implementing the parametrization of Mostert and Deike [20] into a Boussinesq-type or other 

regional-scale wave-resolving model will also be explored in a future study. In addition, the 

obtained parameterization will be used in the related larger-scale Boussinesq model to obtain the 

combined wind-surge-wave loading for bridges in coastal regions. 
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Appendix A Convergence Study 

The meshes used for these simulations are square, such that ∆x = ∆y. Our choice of mesh 

size is related to the numerical convergence. We followed the process used in Mostert and Deike 

[20] to measure the numerical convergence based on the energy budget. The kinetic and 

gravitational potential energies, Ek and Ep, are 

 

 
(A.1) 

 

In Figure 4.8, we show a comparison of energy budget convergence for two cases: one with a 2° 

beach slope and 0.2 initial wave amplitude, and one with 4° beach slope and 0.4 initial wave 

amplitude. Both cases have a storm surge depth of 0.3. In both cases, we compare mesh sizes of 

∆x = L0/213 and ∆x = L0/214, where L0 is the length of the domain. We see that there is little 

difference between the energy dissipation between the two resolutions and thus conclude that these 

simulations converge for a resolution of 213. 
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Appendix B Additional Breaker Interface Plots 

Figure B.1 shows a case with a negative storm surge depth. Here the beach slope is θ = 2o, 

the initial wave amplitude is 𝑎𝑎0/ℎ0  = 0.5, and the storm surge depth is ℎ𝑠𝑠/ℎ0  =−0.1, i.e., the 

inshore region lies above the undisturbed water level. In this case the wave breaks on the beach 

slope. The air cavities observed in Figure B.1(d) indicate this is a plunging breaker. This behavior 

is similar to the cases presented in Mostert and Deike [20], in which the bathymetry does not 

include an inshore region, so that the wave breaks directly on the beach slope. 

 

 

Figure B.1 Wave breaking process (plunging breaker) for the case with a beach slope of 2°, 
an initial wave amplitude of 0.5, and a storm surge depth of −0.1. Vorticity (color contour) in 

the water phase at the following four time instants: (a) t/t0 = 13.2, (b) t/t0 = 15.6, (c) t/t0 = 17.2, 
and (d) t /t0 = 19.0. 
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